
389 

Acta Cryst. (1993). A49, 389-398 

New Techniques for the Determination of the Scale  and Overall  Isotropic 
Temperature Factors 

BY S. PARTHASARATHY* AND K. SEKARt 

Department of  Crystallography and Biophysics,$ University of  Madras, Guindy Campus, 
Madras 600 025, India 

(Received 1 April 1992; accepted 11 September 1992) 

Abstract 

Intensity data  collected by various methods constitute 
the raw material  from which crystal structures are 
derived. It is necessary to put these intensities on an 
absolute basis and obtain an estimate of  the overall 
isotropic temperature  factor. New techniques have 
been developed to estimate the scale and temperature  
factors using the (Icalc) data derived from another  
known structure whose molecule  is s imilar  to the 
given compound .  Theoretical  results have been tested 
in a few cases. It is found that the present methods  
general ly lead to better estimates for k and B than 
the t radi t ional  Wilson-plot  method.  

Database  (Allen, Kennard  & Taylor,  1983) or the 
Brookhaven Protein Data  Bank (Bernstein et al., 1977) 
to arrive at values of  k and B that are more accurate 
than those that could be obta ined by the t radi t ional  
Wilson-plot  method.  We shall  also compare  the 
results obta ined in actual cases using our new tech- 
niques with those obta ined from M U L T A N 8 0  to 
assess their  utility. 

It should be noted that the method proposed here 
is appl icable  only to molecular  crystals. Furthermore,  
the molecules  in the given crystal and in the model§ 
should have comparab le  general  features. 

1. Introduction B = 

Intensity data  collected by various methods constitute 
the raw material  from which crystal structures are f =  
derived. The raw data are first corrected for Lorentz g = 
and polarizat ion effects and absorpt ion to obtain a 
set of  intensities on the same relative scale. It is then Ia = 
necessary to put these intensities on an absolute basis 
and obtain an estimate of  the overall isotropic tem- []~]i = 
perature factor (B, say). This is generally done by the 
well known Wilson-plot  method (Wilson, 1942), 
which requires a priori the informat ion regarding the /r = 
unit-cell contents (i.e. number  and types of  atoms in 
the unit cell). In organic and biological molecules,  []'r]i = 
atoms are bonded  at specific bond  distances and 
angles. If  this addi t ional  informat ion  is in t roduced I ' =  
in some reasonable  way into the scaling procedure,  
we may expect to get values of  the scale factor k and [ / ' ] i  = 
the temperature  factor that are more accurate than 
those that could be obta ined from the t radi t ional  k =  
Wilson plot. Standard direct-methods programs [e.g. N = 
M U L T A N 8 0  (Main  et aL, 1980)] make use of  the 
theoretical  formula  for molecular  scattering in the n = 
scaling procedure.  In this paper,  we shall  describe 
other methods  of  incorporat ing a priori structural 
informat ion  avai lable  from crystals composed  of  
s imilar  molecules  in either the Cambr idge  Structural 
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2. Notation 

overall isotropic temperature  factor for the 
given crystal 
a tomic scattering factor of  a stat ionary atom 
atomic scattering factor of  an atom undergoing 
thermal  vibrat ion 
absolute  intensity of  a reflection H (= hkl) for 
the given crystal 
local average value of  la [i.e. average value of  
la for reflections within the ith (s in0) /A 
interval] 
relative intensity of  the reflection H for the 
given crystal 
local average value of  L in the ith (s in0) /A 
interval 
absolute intensity of  the reflection H for a 
model  
local average value of  I '  in the ith (s in0) /A 
interval 
scale factor necessary to make L equal to I,, 
n u m b e r  of  atoms in the unit  cell of  the given 
crystal 
n u m b e r  of  atoms in a single molecule  of  the 
given crystal 

§ In crystallography, the term 'model' generally means a trial 
structure whose phases are used as an approximation to the phases 
of the given crystal in the structure-determination process. In this 
paper, we shall use the term model to denote a structure whose 
local average intensity data are closely related to those of the given 
crystal so that the information content of these data could be used 
for scaling the relative intensity data of the given crystal. 

0108-7673/93/030389-10506.00 © 1993 International Union of Crystallography 
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P = group of  extra atoms per unit cell in the model 
relative to the given crystal or vice versa 

p = number of extra atoms in the molecule of the 
model relative to the molecule in the given 
crystal and vice versa 

p l = l / k  
P 2  = 2B 
Q = group of  atoms per unit cell common to the 

given crystal and the model 
q = number of common atoms in the molecules of  

the given crystal and the model 
R~ = ith interval of (sin0)/A, namely, si - s -  Si+l, 

i = l t o  v 
s=(sinO)/A 
gi = mean value of (sin0)/A for reflections in the 

interval Ri 
x, = [i '],  
Y , = [ L ] ,  
8 = lattice-multiplicity factor for the given crystal* 

r /=  point-group multiplicity factor for the given 
crystal1" 

~" = number of molecules in the asymmetric unit 
of the given crystal, 

v = number of (sin0)/A intervals into which the 
intensity data of the given crystal is partitioned 

7r~ = a partition of the reflections into v groups 
based on the (sin0)/A values 

p=e/e '  
tr = sum of the squares of the atomic scattering 

factors of all the atoms in a single molecule 
of the given crystal, 

P P 0 2  p=Ef;, E 
j = l  j = l  

q q 
o 2 

E f ; ,  E g]. 
j= l  j= l  

We shall use the symbols N' ,  n', 8', e', ~" and tr' to 
denote the quantities pertaining to the model and 
these are respectively the analogues of N, n, 8, e, ~" 
and tr of the given crystal. We shall freely use the 
above symbols in the subsequent sections without 
further definition. We shall take all atoms in the model 
to be stationary and all atoms in the given crystal to 
have the same isotropic thermal parameter B. 

3. Derivation of the basic equation for the determina- 
tion of scale and temperature factors 

Suppose that the given crystal has a lattice-multi- 
plicity factor 8, point-group multiplicity factor 7/and 

* ~ (or 8') is 1 for a P lattice, 2 for an end-centred or I lattice 
and 4 for an F lattice. 

? This is the total multiplicity arising from the point-group 
symmetry operations of the given crystal, e.g. 77 = 4 for a crystal 
of space group I222. 

~" molecules of  the same structural formula in the 
asymmetric unit. Let n be the number of atoms in 
each molecule of the given crystal. Let Sw = 1/amin, 
where ami n is the minimum of the cell parameters 
a, b, c of the given crystal. Let Smax be the maximum 
value of (s in0) /h  for the observed reflections for the 
given crystal. Let Ia be the absolute intensity and /r 
the relative intensity of a reflection of the given crystal. 
We shall assume that the observed intensity data of  
the given crystal are in the same relative scale, so that 
we can write 

Ia=klr, (1) 

where k is the scale factor needed to convert the 
relative intensities of the given crystal into the 
absolute scale. The atomic scattering factor g of an 
isotropically vibrating atom is related to tti'e scattering 
factor f of  a stationary atom by 

g = f  exp(-Bsin20/h2)=f exp(-Bs2). (2) 

Suppose that we have a crystal of another com- 
pound whose molecules have features similar to the 
molecules of the given crystal* so that it can be chosen 
as a model. Let if' be the number of molecules in the 
asymmetric unit, n' be the number of atoms in each 
molecule, 8' be the lattice-multiplicity factor and r/' 
be the point-group-multiplicity factor for the model. 
Let S"  = 1/amin,' where ami n '  is the minimum value of 
the cell parameters a' ,  b', c' of  the model. We shall 
assume that the structure of the model is known 
completely so that we can compute its intensity data 
assuming the atoms to be stationary. 

Let S ° = max {Sw, S'}. Suppose that the reflections 
of the given crystal in the interval S ° < s < Sma~ are 
partitioned into v groups based on their (s in0) /h  
values by the points s = si, i = 1, 2 , . . . ,  v +  1, where 
s~ = S ° and s~+l = Smax. We use the symbol ¢r~ to 
denote the set of these v subintervals of (sin0)/;t .  
The number of reflections in each (sin0)/; t  interval 
for the given crystal could in general be different from 
that of the model in the corresponding interval. 

The local average values of Ia and I '  corresponding 
to the ith (s in0) /h  interval may be written as (Wilson, 
1942; Rogers, 1965) 

[f~],=a~l~o'=ecr,, [ I-'], = 8'r/ '~'o" = e'tr~, (3) 

where e, e' are defined to be 

e = 8r/~', e' = 8'r/'~". (4) 

* Examples: Cambridge Structural Database version 3.1 (1988) 
contains information of 69 691 compounds. A number of crystal 
structures of steroids are already in the data file. If a new steroid 
is crystallized then it would not be difficult to choose an appropriate 
steroid from the data file to constitute a 'model' for scaling pur- 
poses. In macromolecular crystallography, the native protein may 
be chosen as the 'model' to scale the data of its derivatives. Insulin 
of one species may be used as a model to scale the intensity data 
from an insulin crystal of another species. 
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From (1) we can also write 

[ ~ ] , = k { r r ] , ,  i = 1  to u. (5) 

We shall now consider  the following three cases: (i) 
n = n', (ii) n > n' and (iii) n < n'. 

3.1. Result for  the case n = n' 

We can rewrite (3) as 

~, = [ [a], l  e, ~ = { i ' ] i l  e'. (6) 

Since the molecules in the given crystal and in the 
model  are assumed to have the same composi t ion,  
we can write 

cri cri exp ( -2Bs2) .  (7) 

For  (7) we have used the fact that  the atoms in the 
model  are s tat ionary while those in the given crystal 
are vibrating with the same isotropic tempera ture  
factor. Making use of (6) in (7), we obtain 

[ Ia], = p[ i ' ] i  exp (-2Bg~).  (8) 

Making use of  (5) in (8), we obtain 

[ f,], = (p / k ) [  T'], exp (-2Bg~),  (9) 

which can be rewritten compact ly  as 

yi = px~p~ exp (--p292), i = 1 to u. (10) 
- 2  In (10), xi, y~ and s~ are known quantit ies while p~ 

and P2 are the unknowns  to be estimated. Equat ion  
(10) is the basic equat ion from which all the methods  
discussed in this paper  are developed.  In deriving 
(10), we have used (7), which involves the sums of  
the squares of  the atomic scattering factors of  the 
atoms in the molecules of  the given crystal and the 
model.  Thus,  (10) is derived on the assumpt ion that  
the atoms are uniformly distr ibuted in the unit  cell. 
However,  in the final expression (10) for the basic 
equat ion,  o- and o-' do not appear .  We shall hence 
assume that  (10) could be taken as a reasonably  good 
approximat ion ,  even for actual crystals where the 
concept  of  r andom distr ibution of  atoms in the unit 
cell fails due to the definite structure of  the molecule,  
since the molecules composing the crystal and the 
model  are assumed to have considerable structural 
similarity. This comment  also applies to the basic 
equations derived in §§ 3.2 and 3.3 for the other  two 
cases. 

3.2. Result for  the case n > n' 

We shall use the symbol  Q to denote the common  
part  of  the unit  cell of  the given crystal and the model* 
and the symbol  P for the extra atoms in the unit cell 

* In this case, the model is assumed to consist only of Q atoms. 

of  the given crystal. We can write the structure factor 
of  a reflection H (=  hkl) for the given crystal in terms 
of  the contr ibut ions from the P and Q atoms as 

F =  Fo+ Fp (11) 

so that  the intensity of  the reflection can be written as 

IFI 2 = IFol ~ + IFpI = + 21fPIIFol a,  (12) 

where A is the cosine of  the angle between Fp and 
F o if the crystal is noncent rosymmetr ic  and the 
product  of  the signs of  Fp and F o if the crystal is 
centrosymmetric .  Since the P and Q groups are 
independent ,  the local average value of  A for reflec- 
tions in any given (s in0) /A interval is zero. Let us 
denote IFQI 2 and IF~I 2 by I o and Ip, respectively. 
Furthermore, [F[ 2 = /a .  With these facts, we can obtain 
from (12) 

[ ia]i  = [ [Q]i '+'[ Tp]i . (13) 

We can also write 

[T_o],=e[tr°] ,exp(-2Bg~),  (14) 

[fp] ,  = e[tr°p],exp(-2Bg2). (15) 

Using (5) on the lef t-hand side of  (13) and (14) and 
(15) on the r ight-hand side of  (13), we obtain 

[ i r] i=(e /k) ([o ' °] i+[o '°] i )  exp (-2Bg2).  (16) 

For the present  si tuation where the model  is assumed 
to consist of  only the Q atoms, we can also write 

[ [ ' ] i  = e '[ tr°]i .  (17) 

Making use of  (17) in (16), we obtain 

Yi (px,+ e[tr°]i)p~ exp ( -2 = -p2si) ,  (18) 

which is the required basic equat ion for this case. 

3.3. Result for  the case n < n' 

We shall use the symbol Q to denote  the common 
part  of  the given crystal* and the model  and P to 
denote the extra atoms in the unit  cell of  the model.  
Starting from the structure-factor  relation F ' =  
F ~ +  F~, for the model  and following a procedure  
similar to that  used to derive (13) from (11 ), we obtain 

[ I ' ] ,  = [ [~ ] ,  + [ [~,],. (19) 

Since the atoms in the model  are assumed to be 
stat ionary,  we can write 

t 0 [ f b ] , =  ~ {,~q],, { f , ] , =  , { ~ o ] ,  (20) 

so that  (19) can be rewritten as 

[ ~o], = x , / ~ ' -  [~°], .  (21) 

* In this case, the given crystal is assumed to consist only of Q 
atoms. 
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We can also write 

yi = [ir]i = (1 /k) [ • ] ,  

=(llk)[[Q], 

=(1/k)e[O'q], 

=(1/k)e[cr°],exp(-2Bg2). (22) 

Eliminating [cr°]~ between (21) and (22), we obtain 

y~=(pxi-e[o'°]i)pt exp (-p2L2). (23) 

3.4. Basic equations in a common format 

We can represent (10), (18) and (23) as a single 
equation 

y, = p~ exp (-pEs2i)Xi (24) 

provided we define Xi as 

Xi : pxi + toe[ tr°]i 

and assign the value 0, 1 or - 1  to to according to 
whether n = n', n > n' or n < n'; pl and P2 are the only 
unknowns in (24). It is obvious from (24) that the 
problem of determination of Pl and P2 may be 
approached using optimization techniques based on 
suitable objective functions derived from (24). 

The success of an optimization method depends 
critically on (i) the quality of modelling and (ii) the 
proper choice of the objective function (Hamming, 
1989)• In this section we have given a procedure to 
take care of (i). We shall consider (ii) in § 4. Since 
the Newton-Raphson algorithm is convenient for 
tackling the present optimization problem, we shall 
give the essential results of that algorithm in § 4.1. 

4. Optimization methods for determining k and B 

4.1. Newton-Raphson algorithm for optimization 

Suppose that x and y are two observables that are 
known to satisfy an equation of the form 

f ( x , y ;p )=O,  (25) 

where p = (pl ,  P2, • • •, P,+) is the unknown-parameter 
vector with /x components. Suppose that we know 
v (>/x) pairs of empirical values (x~,y+), i =  1 to 
v, that satisfy (25) for some p. In this case, owing to 
the errors of observation in (x~, y~), the value of 
f(x~, y+; p) will be close but not exactly equal to zero. 
Hence the positive quantity Oy (also called the objec- 
tive function) defined by 

2 (26) O s = ~  z~, 
i = 1  

where 
z, =f(x, ,  y, ; p), (27) 

will also be close but not exactly equal to zero. 
However, under the circumstance stated above, it is 

reasonable to assume that the vector p that minimizes 
(26) in the neighbourhood of some approximate so- 
lution (P)o would be the best value for the unknown 
parameters that may be derived from the given data 
(x~, yi), i = I to v. In connection with the optimization 
of (26) by the Newton-Raphson method, it is con- 
venient to define a v x/x matrix M and a v x 1 matrix 

Ozl/Opt 
Oz2/Opl 

z by 

M =  

Oz.~Opt 

OZl/OP2 
022/0p2 

OZ,,/Op2 

[il Z2 
Z = . 

v 

• "" OZl/Op,,] 
... Oz2(Opu ] , 

... Oz~/Op,. 1 

(28) 

The Newton-Raphson algorithm for minimizing (26) 
is given by (Everitt, 1987) 

(p ) ,+ l=(p ) i - (MrM) - lMrz ,  i = 0 , 1 , 2 , . . . ,  (29) 

where M r is the transpose of M. 

4.2. Derivation of the theoretical results for optimi- 
zation using different objective functions 

In our study we shall consider five objective func- 
tions based on five types of differences between yi 
and Pt exp (-p2gE)xi [see (24)]• The objective func- 
tions and the corresponding quantities needed for 
computing the matrices M and z that are required in 
the optimization procedure are given in Table 1 for 
these cases. For convenience, the methods based on 
the various objective functions are given symbolic 
names as described in Table 1. We shall study the 
performance of the optimization based on these 
objective functions in § 6.2. We shall presently 
describe five other methods of using (24) for 
determining k and B from the known values of x~, y; 
and f+. 

5. Other methods of determining k and B 

The five methods considered here will be referred to 
as (i) LLSQ (=lineafized least-squares method),  (ii) 
ZSM(B) (=zero-slope method using B as the variable 
parameter), (iii) ZSML(B) (=zero-slope method 
involving a logarithm, using B as the variable param- 
eter), (iv) ZSM(k) (=zero-slope method using k as 
the variable parameter) and (v) KBCIPM ( = k  and 
B curves intersection-point method). 

5.1. Theory of LLSQ method 

We can rewrite (24) as 

p~ exp (-p2g~) = y,/Xi,  i =  1 to v. (30) 
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Tab le  1. The quantit ies needed to f o r m  the matrices z and  M corresponding to the different objective func t ions  

, 2 hi is defined to be hi Pl exp (-p2g~)Xi. In each case, the objective function is defined to be Oi=~i=~ z~. = 
AD Method in which the objective function is based on the absolute difference between y~ and hi. 
FD Method in which the objective is based on the fractional difference between y, and h~ in the standard form (i.e. the form 

in which the denominator of the fraction contains the sum of the quantities y~ and h~ pertaining to the crystal and to the 
model, respectively). 

FDC Method in which the objective function is based on the fractional difference between y~ and hi such that the denominator 
of the fraction contains the quantity Yi pertaining to the given crystal. 

FDM Method in which the objective function is based on the fractional difference between y~ and h~ such that the denominator 
of the fraction contains the quantity h i pertaining to the model. 

FDCM Method in which the objective function is based on the fractional difference between y; and h~ such that the denominator 
of the fraction contains the square root of the product of the quantities Yi and h~ pertaining to the given crystal and to the 
model, respectively. 

Method zi OzJ Op~ OzJ Op2 
2 AD Yi -Pl exp (-p2si)Xi -exp (-p2s2)Xi siX~12 exp (-p2s 2) 

2 2 Yi- Pl exp (-p2s2)Xt -2Xo'i exp (-p2 s2) 2Xo'dipl exp (-P2Si) 
FD 2 Yi + Pl exp ( - p 2 s i ) X i  [Yl + Pl  exp ( - P 2 s 2 ) X i ]  2 [Yi + Pl  exp ( - p 2 s 2 ) X i ]  2 

FDC [y~-  p~ exp ( - p 2 s 2 ) X ~ ] / y ~  ( - X J y i )  exp (-p2s~) [ [ X ,  s 2 p l  exp ( - p 2 s 2 ) ] / y i  

y~ exp (p2 s2) yt exp (p2 s2) - y d  2 exp (p2s, 2. ) 
FDM 1 

X/p 1 X/p 2 XiPl 

1 __ s,2"[Y/+Pl exp (-p2s2)]  
FDCM y , - p ,  ~xp <-p~s~>X, [ y, ]'~ 

2 ,i2 -~/p] exp (-p2s~)X,J 2[ytP, exp (-p2s~)Xil '/2 [Y~Pl exp (-p2si)Xi] 

Tak ing  na tu ra l  loga r i thms  o f  b o t h  sides o f  (30), we 
ob ta in  

In P l - P 2 g ~  = In (yi /X~).  (31) 

We can  rewri te  (31) c o m p a c t l y  as 

A + Bu~ = v~, (32) 

where  ui a n d  vi are def ined  to be 

u~=2g~ a n d  v~=ln(X~/y~)  wi th  A = l n k .  (33) 

In (32), u~ a n d  v~ are k n o w n  quant i t ies .  Using  the 
m e t h o d  o f  l inear  least  squares ,  we ob ta in  the 
u n k n o w n s  A and  B: 

m = u i . V i - -  . Ui  . U i V i  l /  . U i - -  U i , 

B =  v E u i v i - E  u i E  vi v u , -  u, . (34) 
i i i " 

From (33), we ob ta in  

k = exp A. (35) 

5.2. Theory o f  Z S M ( B )  

We can rewri te  (24) as 

k = ( X i / y , )  exp ( -2Bg~) ,  (36) 

where  we have  subs t i tu ted  for  Pl and  P2. Suppose  
tha t  Bo is the  t rue va lue  o f  the  t e m p e r a t u r e  fac tor  for  
the given crystal .  F rom (36) it is c lear  tha t  the  quan-  
tities ( X J y ~ )  exp ( - 2 B o  g2) c o m p u t e d  for  different  
in tervals  o f  ( s in0 ) /A  w o u l d  be near ly  equal .  Tha t  is, 
i f  we p lo t  a scat ter  d i ag ram with  gi as abscissa  and  
( X i / y i )  exp (-2Bog~) as o rd ina te ,  we wou ld  expec t  to 
ob ta in  a s t ra ight  l ine wi th  zero slope.  However ,  s ince 

the va lue  o f  Bo is no t  k n o w n  a priori, we c a n n o t  p lo t  
such a scat ter  d iagram.  In the  absence  o f  any  in fo rma-  
t ion  rega rd ing  the  va lue  o f  Bo, we can  t rea t  B in (36) 
as a var iab le  and  define a new quan t i ty  K i ( B )  by 

K i ( B ) = ( X i / y , ) e x p ( - 2 B g 2 ) .  (37) 

I f  we give dif ferent  values  to B and  c o m p u t e  1+ o rde r ed  
pairs  {[g~, K i (B) ] ,  i =  1 to 1,'} c o r r e s p o n d i n g  to each  
va lue  o f  B, we can then  ob ta in  a scat ter  d i ag ram for  
each  va lue  o f  B. The  scat ter  d iagrams  c o r r e s p o n d i n g  
to different  values  o f  B wou ld  have  different  slopes.* 
For  example ,  the  scat ter  d i ag ram for  which  B > Bo 
wou ld  have  negat ive  s lope whi le  the one  for  which  
B < Bo wou ld  have  pos i t ive  slope.  Thus ,  i f  we s tudy  
the s lope o f  the  scat ter  d i ag rams  for  different  values  
o f  B (say, 2, 3, 4, 5 , . . .  ), we would  find the  s lope to 
change  f rom a negat ive  va lue  to a posi t ive  va lue  in 
some in terval  B ' < B < B "  of  B [see Fig. l ( a )  for  an 
example ] .  The  va lue  Bo o f  B c o r r e s p o n d i n g  to zero 
s lope is hence  expec ted  to be in the in terval  B' < B < 
B". We shal l  now cons ide r  a conven i en t  m e t h o d  for  
es t imat ing  the  values  o f  k and  B f rom the  s lopes  o f  
the  scat ter  d i ag rams  c o r r e s p o n d i n g  to B'  and  B". 

The  s lope m o f  the  scat ter  d i ag ram is a func t ion  
o f  B. Tha t  is, m = m ( B ) .  T h e  Taylor-ser ies  e x p a n s i o n  
o f  the  func t ion  m ( B )  abou t  B = B0 is given by 

m ( B ) = m ( B o ) + ( d m / d B ) n o ( B - B o ) +  . . . .  (38) 

Since the va lue  o f  the  s lope o f  the scat ter  d i ag ram 
for  B = Bo is zero,  we have  m (Bo) = 0. Neg lec t ing  the  

* We shall fit a least-squares straight line to the scatter diagram 
corresponding to a given B and refer to the slope of the least- 
squares straight line thus obtained as the slope of the scatter 
diagram corresponding to the particular B. 
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terms of higher powers in B - Bo, we obtain from (38) 

m(B)~-(dm/dB)Bo(B-Bo).  (39) 

Putting B = B' in (39), we arrive at 

Bo~- B ' - [ m ( B ' ) / ( d m / d B ) j .  (40) 

Since the values of B' and B" are close to Bo, we can 
approximate the value of (drn/dB)Bo by ( m " -  
rn') / ( B" - B'). That is, 

(dm/dB)Bo~-(m"-m' ) / (B"-B ' ) ,  (41) 

where m ' =  m(B')  and m " =  re(B"). Making use of 
(41) in (40), we obtain 

Bo~-B ' - [m ' / (m" -m ' ) ] (B" -B ' ) .  (42) 

Hence, we can determine the value of Bo. Using this 
value, we can compute the value of k from [see (36)] 

k = ( 1 / v )  ~, (XJy,)exp(-2Bog2).  (43) 
i = 1  

5.3. Theory of ZSML(B) 

This method is similar to the ZSM(B). Here the 
natural logarithm of (XJyi)  exp (-2Bg~) is taken as 
the ordinate instead of (X~/y~) exp ( - 2 B  g2.). Scatter 
diagrams obtained in a typical situation are shown 
in Fig. l (b) .  

5.4. Theory of ZSM ( k ) 

We can rewrite (24) as 

e xp ( p2g 2) = p, X, / y,. (44) 

Taking natural logarithms of both sides, we can 
rewrite (44) as 

B = In [ X,/(ky,)]/2g~. (45) 

For a given crystal, the left-hand side of (45) is a 
constant. From an argument similar to that used in 
§ 5.2, it is clear that the graph of ln  [Xi/ky~]/2g 2 versus 
g~ will have zero slope when the true value for k (/Co, 
say) is used. 

The value of k obtained from the linearized least- 
squares method (kL, say) may be taken to be the 
initial value of k about which the scatter diagrams 
are to be obtained. From (45), it is clear that the 
scatter diagram is expected to have positive slope for 
k</Co and negative slope for k >  ko. Fig. l (c)  shows 
the results obtained in a typical situation. The value 
of k for which the slope of the scatter diagram is 
expected to be zero may then be obtained by the 
procedure used in § 5.2 by studying the scatter 
diagrams obtained for k = akL, where o~ =0.8, 1.0, 
1.2, 1.4, 1.6 etc. If ko is the value of the scale factor 
obtained corresponding to zero slope of the scatter 
diagram, the best estimate of B may then be obtained 
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Fig. 1. Least-squares straight lines fitting the scatter diagrams obtained in the techniques 
(a) ZSM(B), (b) ZSML(B), (c) ZSM(k) and (d) KBCIPM for model 1 of Table 3. 
The numbers near the curves denote the constant values of the appropriate parameters 
shown. The points of the scatter diagrams corresponding to two different values of 
any particular parameter are shown using different symbols (i.e. x and 0 )  for clarity. 
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Table 2. Relevant data for the crystals used in the tests 

Crystal codes: 
I L-Prolyl-L-leucine monohydrate (Panneerselvam & Chacko, 1990). 

II L-Prolyl-L-isoleucine monohydrate (Panneerselvam, Chacko & Veena, 1989). 
III 53-Androstan-3a-ol-17-one (High & Kraut, 1966). 
IV 53-Androstan-3fl-ol-17-one (Weeks, Cooper, Norton, Hauptman & Fisher, 1971). 
V L-Arginine hydrochloride monohydrate (Mazumdar & Srinivasan, 1964). 

VI L-Arginine hydrobromide monohydrate (Mazumdar & Srinivasan, 1964). 
VII 2-(Chlorophenyl)thiazolidine (Eswaramoorthy, Ponnuswamy & Raju, 1991). 

VIII 2-Phenylthiazolidine (Eswaramoorthy, Ponnuswamy & Raju, 1991). 
IX 3-Ethyl-l-methyl-2,6-diphenyl-4-piperidone (Sekar & Parthasarathy, 1992). 
X 1,3,3-Trimethyl-2,6-diphenyl-4-piperidone (Sekar, Parthasarathy & Radhakrishnan, 1992). 

XI 3-Methyl-2,6-diphenyl-4-piperidone (Sekar, Parthasarathy & Rajalingam, 1990). 
XII 2,6-Bis(p-methoxyphenyl)-3,5-dimethyl-4-piperidone (Sekar, Parthasarathy & Radhakrishnan, 1990). 

Space Asymmetric 
Crystal group unit z a (/~) b (]k) c (/~) a (o) fl (o) y (o) 

I P21 CI lH2oN203.H20 2 6.492 5.417 20.491 90.0 96.6 90.0 
II P21 Ct I H2oNzO3.H2 O 2 6.601 5.413 19.128 90.0 98.1 90.0 

III P2t C19H3oO2 2 9.560 7.900 11.780 90.0 111.4 90.0 
IV P21 C19H3oO2 2 6.596 21.521 6.313 90.0 109.4 90.0 
V p21 (C6HtaN202.HCI.H20)2 2 11.220 8.500 11.070 90.0 91.0 90.0 

VI p21 (C6Ht4N202.HBr.H20)2 2 11.260 8.650 11.250 90.0 91.3 90.0 
VII P212 t 2 t C9 H x o CI NS 4 5.529 8.486 20.432 90.0 90.0 90.0 

VIII P212121 C9H 11NS 4 8.388 18.114 5.625 90.0 90.0 90.0 
IX C2/c C2oH23NO 8 21.526 6.096 25.958 90.0 97.3 90.0 
X P1 C2oH23 NO 2 6.486 10.921 12.542 79.9 88.9 73.5 

XI C2/c CI8HI9NO 8 19.266 6.999 21.653 90.0 94.4 90.0 
X I I P212121 C21 H25 NO3 4 7.031 11.675 22.783 90.0 90.0 90.0 

from (45) as 

B=(l/u) ~ In (Xi/koy,)/Zg~. 
i=1 

(46) 

5.5. Theory of KBCIPM 
We have shown that B and  k can be written as [see 

(46) and (43)] 

B=(1/u) ~ ln(Xi/ky,)/2g~, (47) 
i = !  

k=(1/u) ~ Xiexp(-2Bg2)/yi. (48) 
i=l 

Suppose that approximate  values of k and  B are 
known to be ka and Ba, respectively. For example,  
we may obtain the approximate  values of  k and B 
from the LLSQ method (see § 5.1). One can vary k 
in the ne ighbourhood  of  k~ and use (47) to calculate 
the corresponding values of  B. Thus, taking the values 
of  k to be ak,,, where a = 0.90, 0.95, 1.0, 1.05 and 
1.1, the corresponding values of B may be obtained 
from (47). The various points (k, B) thus obta ined 
define a curve in the (k, B) plane and we shall  refer 
to this curve as the B(k) curve. Similarly,  one can 
vary B in the ne ighbourhood  of  Ba and use (48) to 
calculate the corresponding value of  k. The set of  
points obta ined by taking B to be B,, - 0 .3 ,  B~ -0 .15 ,  
B~, Ba+0.15  and B~+0.30 defines a curve in the 
(k, B) p lane  and we shall  refer to this curve as the 
k(B) curve. The point  where the k(B) curve and B(k) 
curve intersect may be taken to be a more accurate 

estimate of  k and B. Fig. l ( d )  shows the result 
obta ined in a typical  situation. 

6. Test of the theoretical results 

The above methods  of  determining the scale and 
temperature  factors were tested on the intensi ty data 
of  a few known crystals (for details of  these crystals 
see Table 2). The results obta ined from these tests 
are given in Table  3 for crystal I. The first model  for 
crystal I was obta ined by deleting the C atom marked  
1 in Fig. 2(b). The second model  for crystal I was 
obtained by deleting the C atom marked 1 in Fig. 
2(b) as well as replacing the H atom at the C atom 
marked 2 by a C atom at a s tereochemical ly  correct 
position. Crystal  II i tself  was taken as the third model  
for crystal I. The results obta ined for the other crystals 
are provided in Tables I -VIII  of  the deposi ted 
material* and the method  of  obtaining the models  
for these crystals are also indicated symbol ica l ly  in 
these tables. For each crystal, the value of  k and the 
average value of  the isotropic equivalents  of  the tem- 
perature factors of  the various non-hydrogen atoms 
as obta ined in the final cycle of  the least-squares 
ref inement were taken to be the true values of  k and 
B, respectively, and these are denoted by k, and Bt. 

* Tables and other relevant material have been deposited with 
the British Library Document Supply Centre as Supplementary 
Publication No. SUP 55489 (13 pp.). Copies may be obtained 
through The Technical Editor, International Union of Crystallogra- 
phy, 5 Abbey Square, Chester CHI 2HU, England. 



396 SCALE A N D  OVERALL ISOTROPIC TEMPERATURE FACTORS 

Table 3. Determination of  the values of  k and B for crystal I 

Results obtained using model 1 
No. Method k × 10 -3 B No. Method 
1 AD 11.218 (12.2) 3.20 (-38.6) 1 AD 
2 FD 11.719 (17.2) 3.02 (-42.0) 2 FD 
3 FDC" 11.644 (16.4) 3.08 (-40.8) 3 FDC 
4 FDM 11.755 (17.5) 2.98 (-42.8) 4 FDM 
5 FDCM 11.182 (11.8) 3.09 (-40.6) 5 FDCM 
6 LLSQ 11.718 (17.2) 3.02 (-42.0) 6 LLSQ 
7 ZSM(B) 11.537 (15.4) 3.09 (-40.7) 7 ZSM(B) 
8 ZSML(B) 11.627 (16.3) 3.05 (-41.5) 8 ZSML(B) 
9 ZSM(k) 11.404 (14.0) 3.12 (-40.2) 9 ZSM(k) 

10 KBCIPM 11.259 (12.6) 3.17 (-39.1) 10 KBCIPM 
Mean 11.506 (15.1)* 3.08 (-40.8)* Mean 

Results obtained using model 3 

Results obtained using model 2 

No. Method k × 10 -3 B No. Method 
1 AD 11.198 (12.0) 3.23 (-38.0) 1 AD 
2 FD 11.403 (14.0) 3.15 (-39.4) 2 FD 
3 FDC 11.319 (13.2) 3.23 (-38.0) 3 FDC 
4 FDM 11.442 (14.4) 3.11 (-40.4) 4 FDM 
5 FDCM 11.379 (13.8) 3.25 (-37.7) 5 FDCM 
6 LLSQ 11.402 (14.0) 3.16 (-39.4) 6 LLSQ 
7 ZSM(B) 11.154 (11.5) 3.25 (-37.7) 7 ZSM(B) 
8 ZSML(B) 11.333 (13.3) 3.18 (-39.0) 8 ZSML(R) 
9 ZSM(k) 11.219 (12.2) 3.21 (-38.3) 9 ZSM(k) 

10 KBCIPM 11.018 (10.2) 3.29 (-36.8) 10 KBCIPM 
Mean 11.287 (12.9)* 3.20 (-38.5)* Mean 

k × 10 -3 

11.094(10.9) 
11.538 (15.4) 
11.497 (15.0) 
11.558 (15.6) 
11.154 (11.5) 
11.538 (15.4) 
11.342 (13.4) 
11.463 (14.6) 
11.269 (12.7) 
11.161 (11.6) 
11.362 (13.6)* 

Results obtained using .~ data 

Deviations in % from the refined values k~ and B t are given within parentheses [cf. equation (51)] 

kt = 10.000 B, = 5.21 
(k)__= 11.385 (13.9) (B) = 3.14 (-39.7) 

- -  

k =  11.365 (13.7) B =3.14 (-39.7) 
k~ = 15.187 (51.9) Bt = 1.74 (-66.6) 

k n = 14.568 (45.7) B n = 1.91 (-63.3) 
knr = 12.433 (24.3) B m = 2.40 (-53.9) 

B 

3.25 (-37.7) 
3.09 (-40.7) 
3.13 (-40.0) 
3.06 (-41.3) 
3.14 (-39.7) 
3.09 (-40.7) 
3.16 (-39.4) 
3.11 (-40.3) 
3.17(-39.1) 
3.21 (-38.3) 
3.14 (-39.7)* 

kx l0  -3 B 

11.170 (11.7) 3.22 (-38.1) 
11.553 (15.5) 3.09 (-40.7) 
11.484 (14.8) 3.15 (-39.6) 
11.587 (15.9) 3.05 (-41.5) 
11.051 (10.5) 3.16 (-39.4) 
11.552 (15.5) 3.09 (-40.7) 
11.339 (13.4) 3.17 (-39.2) 
11.474 (14.7) 3.11 (-40.2) 
11.297 (13.0) 3.17 (-39.2) 
11.147 (11.5) 3.23 (-38.1) 
11.365 (13.7)* 3.14 (-39.7)* 

* These error values are calculated using the corresponding mean values directly and they are not the average of the quantities in 
parentheses in the respective columns of the table. 

6.1. Some explanatory remarks 

(i) All the techniques require the local average 
intensity data (also called the T data) for at least one 
model. The known crystal structure of a compound 
whose molecule is expected to have reasonable simi- 
larity to that of the given crystal may be chosen as a 
model. We shall refer to the known crystal structure 

1 

1 

oW oW 

(a) (b) 

Fig. 2. Representation of the molecules defining the asymmetric 
units of crystals I and II described in Table 2. 

from which a model is to be obtained (by making 
some appropriate minor modifications to the asym- 
metric unit) as the potential model crystal. In many 
situations, it is possible to obtain more than one model 
from a particular potential model crystal and hence 
the methods of determining_k and B can be imple- 
mented on more than one /-data set. We shall refer 
to the different models that can be obtained from a 
particular potential model crystal as model 1, model 
2 etc. 

(ii) T h e  f d a t a  o f  e a c h  m o d e l  w e r e  o b t a i n e d  f r o m  
t h e  s t r u c t u r e - f a c t o r  m a g n i t u d e s  o f  t h e  r e f l e c t i o n s  
c a l c u l a t e d  f r o m  t h e  k n o w n  p o s i t i o n s  o f  t h e  a t o m s  in  

t h e  m o d e l  b y  t a k i n g  t h e  a t o m s  to  be  s t a t i o n a r y .  

(ii i)  T h e  m e a n  v a l u e  o f  k o b t a i n e d  b y  d i f f e r e n t  
m e t h o d s  [i.e. A D ,  F D  etc. ( see  T a b l e  1)] f r o m  t h e  )- 

d a t a  o f  e a c h  m o d e l  is g i v e n  at  t h e  b o t t o m  o f  T a b l e  3 
c o r r e s p o n d i n g  to  t h a t  m o d e l  a n d  t h e  m e a n  o f  t h e s e  
m e a n  v a l u e s ,  d e n o t e d  b y  (k) ,  is a l so  g i v e n  at  t h e  
b o t t o m  o f  t h e  t ab le .  A s i m i l a r  s i t u a t i o n  a p p l i e s  to  B. 

(iv) I f  w e  h a v e  m d i f f e r e n t  m o d e l s  f o r  a g i v e n  
c rys ta l ,  i n s t e a d  o f  c a l c u l a t i n g  t h e  m e a n  o f  t h e  m e a n  
v a l u e s  o f  k a n d  B as d e s c r i b e d  in ( i i i) ,  w e  c a n  a v e r a g e  
t h e  X d a t a  ( X I ,  X 2 , . . . , X m )  o b t a i n e d  f r o m  t h e  m 
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Table 4. Summary of the percentage errors in the values of k and B estimated by the various procedures for 
different crystals 

Results  for  crystal I are taken  f rom Table  3 and  those for  the others  f rom Tables  I - V I I I  o f  the depos i t ed  mater ia l .  

% error  in % error  in 

Crystal  (k) /~ k I kll k m (B) /~ B I Bn B m  

I 13.9 13.7 51.9 45.7 24.3 -39.7 -39.7 -66.6 -63.3 -53.9 
II -3.6 -4.0 64.5 53.3 24.5 -11.7 -11.8 -58.9 -53.3 -39.8 

I I I 5.3 * 12.3 24.1 23.2 -0.3 * 5.6 -3.0 -2.5 
I V - 7 . 2  * 9 . 0  19 .5  19 .2  8 . 4  * 7 . 5  - 4 . 4  - 3 . 4 ?  

V 1.4 1.5 23.0 19.6 19.6 -7.0 -7.0 -40.1 -38.0 -37.4 
VI 2.3 3.0 11.4 9.6 10.1 1.6 1.0 5.3 7.5 7.0 

VII 5.8 5.7 15.6 15.2 12.5 -2.4 -2.5 -6.9 -6.9 -5.3 
VIII -8.5 -8.3 10.8 10.3 6.5t -8.8 -9.1 -19.5 -19.5 -17.9 

IX -12.0 -11.0 16.2 16.5 16.5 -9.2 -9.6 -16.7 -16.9 -18.5 
Mean 6.7 6.7 23.9 23.8 17.4 9.9 11.5 25.2 23.6 20.6 

• The )?-data method cannot be applied here since only one model was used. 
? The case where the values obtained by a M U L T A N 8 0  procedure (i.e. I, II or III) are better than the values obtained by the new procedures. 

models [see (24)] and use the resulting average X 
data (called Jf data) for determining the scale and 
temperature factors of the given crystal. For this, the 
same partition 7r~ should be used for all the models. 
The basic equation for this procedure (called the 
)?-data method) can be obtained from (24) as 

yi = pl exp (-p2~Zi),f2i, (49) 

where 

X , = ( X , + X 2 + . . . + X , , , ) / m .  (50) 

In Table 3, the values of k and B obtained by this 
method are denoted by/~ and /~, respectively. 

(v) It is convenient to define the percentage error 
r in the measured value vm of a quantity v (=k  or 
B) to be 

r= lO0(v, , -v ,) /v , ,  (51) 

where v, is the true value of v. A positive value of r 
denotes overestimation while a negative value denotes 
underestimation. 

(vi) For each crystal, the values of k and B were 
also computed using MULTAN80 by the following 
three procedures, which differ in data input. For the 
first procedure (called procedure I), the input data 
are the type and number of atoms of each type in the 
unit cell. The second and third procedures (pro- 
cedures II and III) use the additional data in the 
form of the coordinates of the atoms of a part of the 
molecule (e.g. benzene ring or skeleton of piperidone 
ring etc.) and those for the full molecule, respectively, 
for implementing the Debye formula for molecular 
scattering. The values of k and B obtained by pro- 
cedures I, II and III are denoted by k~, ki~ and k~x 
and BI, B~I and Bxi~, respectively. 

(vii) Fig. 1 graphically illustrates the principle 
involved in the methods ZSM(B) ,  ZSML(B),  
ZSM(k )  and KBCIPM. These methods are, however, 
implemented in terms of numerical computations in 
our study. 

6.2. Results obtained from the new techniques and 
MULTAN80 

From the present study on the various crystals, we 
obtain the following results. (i) No particular tech- 
nique is uniformly best or worst for the determination 
of both k and B. (ii) For a particular model of a given 
crystal, the method that yields the best value of k 
does not necessarily yield the best value for B as well. 
(iii) For a given crystal using different models, the 
technique that gives the best value of k with one 
model does not necessarily give the best value of k 
with another model. A similar statement is valid for 
the evaluation of B. Furthermore, random errors in 
the input data may influence the various techniques 
differently. Hence, it is thought useful to employ the 
different techniques for any given model and compute 
the averages of the values of k and B obtained from 
the different techniques.* The mean values thus 
obtained are given in Table 3 along with the percen- 
tage errors in the estimates (shown within paren- 
theses). The mean values of k and B of these mean 
values obtained from the different models (denoted 
by (k) and (B)) are also given in Table 3 togethe_r 
with the values /~ and B obtained by the X- 
data method. For each crystal, the values of /~ and 
(k) and /~ and (B) are found to be equally good. 
However, since the )(-data method is computa- 
tionally somewhat simpler, it is to be preferred. 

Table 4 gives a summary of the percentage errors 
in the mean values /~, (k), /3 and (B) for the given 
crystals. For comparison, the percentage errors in the 
estimates of k and B obtained by the three 
MULTAN80 procedures are also given. From Table 
4, we obtain the following results. 

* The  ca lcula t ion  o f  the [ da ta  for  the model  takes the m a j o r  
por t ion  o f  the calcula t ion t ime;  the evaluat ion  o f  k and  B by all 
ten new techniques  takes m u c h  less time. For  example ,  for  the 
typical  case r epor ted  in Tab le  3, the total t ime taken  for  the job  
in a M i c r o V A X - I I  system is 3.5 min of  which the ca lcu la t ion  of  
the k and  B values  by all the ten techniques  takes only 30 s. 
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(i) Of the three M U L T A N 8 0  procedures, pro- 
cedure III is found to be the best in one out of nine 
cases for the determination of k and in one out of 
nine cases for the determination of B. It is interesting 
to note that procedure I turns out to be preferable to 
procedure III in three out of nine cases for the 
determination of k and two out of nine cases for the 
determination of B. 

(ii) The new techniques are found to lead to sig- 
nificantly better values of  k and B than M U L T A N 8 0  
procedures in eight out of nine cases. Even in the 
rare situations where M U L T A N 8 0  values are better, 
the new techniques are only slightly inferior. Thus, 
it appears that the new techniques could be used 
profitably. 

(iii) To obtain a overall idea, the global average 
values of the percentage-error magnitudes in the esti- 
mated values of k and B for the various crystals are 
also given in Table 4. These also show that the new 
techniques are in general preferable to the 
M U L  T A N 8 0  procedures. 

(iv) It may incidentally be noted that all ten new 
techniques and the three M U L T A N 8 0  procedures 
underestimate the value of B in most cases. Further- 
more, the new techniques overestimate the values of 
k in most cases while the M U L T A N 8 0  procedures 
lead to overestimated values in all the cases. 

7. Concluding remarks 

From the above considerations it appears that the 
,g-data method could be used profitably in practice. 
The new procedure is likely to be particularly useful 
in the field of protein crystallography where one has 
access to intensity data from crystals of homologous 
proteins. However, further work needs to be carried 
out on the data from actual protein crystals to confirm 
this conclusion. 

One can also employ the maximum-entropy prin- 
ciple to tackle the present problem instead of the 
procedures discussed in this paper. Work in this direc- 
tion is in progress. 

The authors thank Dr M. N. Ponnuswamy and Mr 
S. Eswaramoorthy for providing raw intensity data 
for some crystals used in the test of the theoretical 
results. Thanks are also due to the Council of Scien- 
tific and Industrial Research, India, for the award of 
a Senior Research Fellowship to KS. 
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Abstract 

The wide-angle correlation function y(r) of  a dilute 
system of particles, shaped as truncated circular right 

cones, is evaluated in closed form. The angular 
average of the contribution proportional to r 3 gives 
y'"(0+), the value at the origin of the third derivative 
with respect to r of the corresponding small-angle 
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